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Bremsstrahlung and nonlinear currents in a dense plasma exposed to an intense laser field
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The classical kinetic equation for electrons in a dense strongly coupled plasma, interacting with laser
radiation, is considered. The effect of strong ion-ion coupling on nonlinear bremsstrahlung and higher-
order harmonics of the electric current is investigated. Particular consideration is devoted to a strongly
degenerate plasma. Analytical formulas for nonlinear conductivities versus field intensity are derived for
this case. These formulas are valid in the nonasymptotic region 0 <ep <&y (gg is the electron quiver en-
ergy in a laser field, € is the electron Fermi energy in metals).

PACS number(s): 52.25.Dg, 52.25.Fi, 52.50.Jm, 52.35.Nx

I. INTRODUCTION

Absorption by inverse nonlinear bremsstrahlung was
intensively studied during the last three decades [1-11].
First considered in [1-7], this problem is still in the focus
of current research [8—11]. The physical picture of in-
verse bremsstrahlung absorption in a super-intense laser
field is rather simple. Qualitative estimates can be ob-
tained by taking the conventional formula for the brems-
strahlung absorption and substituting the electron quiver
velocity vy due to a laser field for the characteristic elec-
tron velocity v, in the absence of a field. Thus the prob-
lem for super-high field intensities mainly consists in ob-
taining correct numerical and logarithmic factors. In
some preceding papers on the nonlinear bremsstrahlung
in a gaseous plasma, see, e.g., [6,7], these factors, which
can be large in magnitude, have been lost. The most
complete asymptotic analysis of the problem of the
bremsstrahlung absorption in gaseous plasmas has been
given recently [10]. However, some important questions
were not considered.

First, density effects (plasma coupling effects) relevant
for nonlinear inverse bremsstrahlung have not been con-
sidered in the above references. This question is of par-
ticular interest in connection with the recent investiga-
tion of ultrashort laser pulses interacting with solids
[12-15]. Under such conditions, a very dense plasma
with unusual properties is created: the electron subsys-
tem is heated, while the ion subsystem remains cool and
therefore strongly coupled (correlated). As is well
known, ion-ion correlations strongly influence electron-
ion Coulomb scattering with momentum transfer
p <p,~*/a, where a is the correlation length in the ion
subsystem, the radius of the ion sphere, 47a®/3=1/n,,
where n; is the ion number density. In a dense plasma p,
can be come larger than the characteristic electron
momentum mv, and therefore ion-ion correlations are
]
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important. This case will be, in particular, considered in
the present paper.

Secondly, the question of higher-order harmonics of
the electric current in a super-intense field has not been
discussed in the literature since the pioneering paper [1].
However, in [1] the double logarithmic factors were es-
timated in a rather approximate manner, and only a gase-
ous plasma was considered. Therefore this question is
worth investigating in more detail, including effects of
strong ion-ion correlations, and we shall consider it in the
present paper as well.

Thirdly, the problems discussed above refer to the
asymptotic case vy >>v, and thus they reduce to the
question of correct logarithmic factors. Thus far the
nonasymptotic region v, ~vy has not been considered in
the literature. However, the case of modest intensities
vg <v, is of practical interest relevant to laser radiation
interaction with condensed matter. Indeed, for field in-
tensities as high as I ~10'®> W/cm? and photon energies
#iw ~4 eV, typical for recent experiments [12], the quiver
energy mv2/2~10 eV is comparable with the electron
Fermi energy in solids. At the same time the electron
subsystem, even when heated up to several eV, remains
strongly degenerate. Thus in the present paper we shall
consider bremsstrahlung and higher-order harmonics of
the electric current in the nonasymptotic range vg ~v,
for the case of strongly coupled, strongly degenerate
dense plasma. It is important that the results obtained
for nonlinear conductivities can be presented in a purely
analytical form over the entire range (0 <vg <v,).

II. THE ELECTRON KINETIC EQUATION

The kinetic equation for the electron distribution func-
tion f(p,?) of a strongly correlated plasma exposed to a
high-frequency electrical field E cosw? can be expressed in
the form (hereinafter we assume the Planck constant
#i=1) [16]

3
f(p.t) +eEcos(wt)g—p=n,»f—d—q—(f(p+q,t)—f(p,t))21r8(£(p+q)—£(p))|Vqle(q) :

(4me’Z )?
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Here, e(p)=p?/2m is the electron kinetic energy, m,e are the electron mass and charge, respectively, | Ze| is the ion
charge, and S (q) is the ion structure factor, which describes the correlation in ion positions and relates to the Fourier
transformation of the two-particle distribution function [16].

An analogous approach was chosen in [11]. However, the authors of [11] used the collisional integral in the Landau
form, as in [1], which is not adequate for treating logarithmic factors as well as ion-ion correlation effects. The authors
of [11] were aiming for a different goal and solved the kinetic equation averaged over fast oscillations. This limit is not
suitable to consider the conductivity problem. Lastly, the question of the applicability of the classical kinetic equation
(1) to describe the electron-laser-field interaction has not been considered in [11]. We shall return to this question in
Sec. VI.

We introduce a function F which represents the electron distribution in the oscillating frame of reference:

F(P,t)=f(P+(eE/w)sinwt,t) . (2)

Thus we can rewrite Eq. (1) in a form convenient for further analysis:

3 L
OF [ 24|y, [25(q) F(P+q)— F(P)]278 |e(P+q) —e(P)+ CE-dSin0L | 3)
at (27) mao

Let us seek the solution of this equation in the form
F(P,t)= 3 explinwt)d,(P,t). 4)

After substitution of Eq. (4) into Eq. (3) we get
inw, (P,0)+ g, (P,0)=n, [ g g olv [ ax S, 0 | —x2E9 |explix[e(P)—e(P+q)]]

n ot n i (217_)3 q voc < n—n mo
X[, (P+q,t)—d,(P,1)], (5)

where J, are Bessel functions.

We consider the case when the o is much larger than the electron-ion collision frequency. It means that the func-
tions ¢, vary very slowly during the time 1/w. For n50, we can neglect the term with the time derivative on the left-
hand side of Eq. (5) and omit terms with n'70 on the right-hand side. Then each harmonic ¢, can be expressed in
terms of ¢:

n; d3 o E-
—_i r_aeq 2 _erq ; — v _
é,(P,t) ina)f (217)3S(q)|VqI f_wde,, x= exp{ix[e(P)—e(P+q)]}[do(P+q,t)—d(P,2)] . (6)

Using Eq. (6) one can directly verify that the following identities hold for n70:

d*P
(P,t) =0 @)
J B =5
and thus the ¢, satisfies the conventional normalization condition:
d*p
(P,1) =n, , (8)
f %o (2m)3

where n, is the electron number density. The equation for ¢, was investigated in [8,9,11]. The time dependence of ¢ is
attributed to the heating of the electron subsystem. In the present paper, we shall mainly concentrate on harmonics ¢,,,
n#0 and a particular form of ¢, is not important for this purpose. We assume only that the @, satisfies the general con-
dition

valid for a medium possessing inversion symmetry.

III. NONLINEAR CURRENTS

The electron current j’' of a plasma can be calculated from the following definition:

. d?
! =ef (27rp)3 f(p,t)L

=ef

3 .
d P3 F(P’t)P-HEe/m)smcot ' (10)
(2m) m
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Accordingly the zero-order harmonic can be written as

. ap P
Jo=ef(—2—““¢0( t)+

2
n sinwt .

(11)

Due to Eq. (9), the first integral in Eq. (11) vanishes and only the second term containing E survives. However if in
with n7-0 are considered, we have the opposite situation, and due to Eq. (7) the term with E does not contribute. Final-

ly substituting Eq. (6) into Eq. (10) we obtain (for n7-0)

2
f(zwﬁf(z )35( 24

n;e

in —eEexp(zncot)

—X

x[% dxJ,

q-Cg

eE-q
mo

exp{ix[e(P)—e(P+q)]}do(P,1) , (12)

where ey is the unit vector in the E direction. It can be shown that due to Eq. (9) j, exactly vanishes for even 1, as one
should expect for a medium with inversion symmetry. Therefore in this case only odd harmonics of the electric current

can be generated, and hereinafter n is assumed to be odd.

The integral with respect to x in Eq. (12) can be calculated, resulting in

3
479 ¢

2

e
i —eEexp(mwt)—f

(217)3 (2m)}

Xsin

where the actual region of integration over p and q coin-
cides with the region of the definition of the integrand.

IV. THE INTENSE-LASER-FIELD LIMIT

For concrete calculations, we chose a particular form
of the S(q) obtained for the one-component plasma mod-
el [17], which is characterized by similarity coupling pa-
rameter [ =Z2%?2/aT (T is the ion temperature). Figure
1 depicts the behavior of S(g) at I' =120, which is a typi-
cal value for strongly coupled plasmas of the liquid-metal
type we are interested in here. It is seen that S(q) can be
approximated by a discontinuous function represented as
the combination of a parabola Cg? and a steplike func-
tion joined together at a certain point g =k~5/a. In the
case of a strongly degenerate plasma, the electron
momentum is typically of the order of the average
momentum for the Fermi distribution: P,~1.4Z'3/a.
Therefore if Z is not too large, one has k> P,, and the
ion-ion correlation strongly affects electron-ion scattering

S(k)

0

FIG. 1. Typical behavior of the ion-ion structure factor S(q)
and its approximation. The plot corresponds to I'=120 [17].

,9€E
LA - ¢o(P)

n arcsin————q—s(P)—s(P+ )
—eE-q/(mw)

{(eB-q)2/(mw)*—[e(P)—e(P+q)]*}'/2

(13)

r

events. In this case we can split the integration region
with respect to |q| in (13) into two parts: [0,x] and
[k, 0]. We consider the calculation of the respective
contributions j, and j', separately. In the latter one the
P dependence of the integrand in Eq. (13) can be neglect-
ed because P, <g in this domain. As we already men-
tioned above, S(g)=1 in this region. After implementing
integrations over P and the directions of q we obtain

n c,‘,=—eEn,.n,h,exp(ina)t)—m—zL2(41re22)2J,'l ,
’ neE* 2w

= —‘lf"/z SN 4y (14)

sin?y

where A=arcsin(qw/2|eE|) and the J, in Eq. (14) should
be considered to be zero if gw/2|eE| > 1, or, equivalently,
the region of the integration with respect to g coincides
with the region of the definition of the function A. The
integral J,, after integration by parts with respect to g,
results in

—Ind dz sin(n arcsinz)

174 2V 1—22 z
_ (" g9z sin(narcsinz) ’ (15)
4 zV1—z? z
where A =|2¢E /wk|. Thus far we have not used the fact

that 4 >>1 (strong fields). Both integrals in Eq. (15)
diverge at the low limit if 4 — o« and converge at the
upper limit. Therefore seeking for the asymptotic
behavior at 4 — « we can substitute the upper limit by
an arbitrary quantity z, <1, which does not affect the
final result. Then integration by parts in Eq. (15) is possi-
ble and one obtains under the condition n < 4
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|2eE |
In——
wK

J (16)

n
2

’
n

For n > A the integrals J,, are comparatively small due
to rapid oscillations of the integrand in Eq. (15). Thus
from Egs. (16) and (14), we have for n < 4

IZeE |
WK

J:;,oc—_egn,-neexp(inwt) 46322 17

and harmonics with n > A4 can be neglected.

Let us consider now the contribution from the region
0=<g =<« to Eq. (13). In this case we can use the parabolic
approximation for S(q):

2
S(g)=S,, % , g<k (18)
where S, is the altitude of the first maximum of the

structure factor. Separating the integration with respect
to directions of q and introducing the new variable
x =|eE|cosalqw, where a is the angle between q and E
we obtain
- . n;e
Jno= —egexplinwt )——

ho

d3P K 2 2 2q ’"
xfmqso(mfo dg *|V, 'S ()= 2mT

A,

n arcsin—
X

——————sin

Jr= 2mw? f leE!/qw
In o2E?2

1
\/xz—A%

m
e

In the region of the integration in Eq. (19) we have
leE|/wg> A /2>>1. For A— o, the J.' logarithmically
diverges at the upper limit. Therefore the integral J,' is
determined mainly by the vicinity of its upper limit and
we can substitute A; by the asymptotic expression
1+P-E/gE. Thus in the limit 4 —  one readily gets

A =—[e(P+q)—¢e(P)].

after straightforward integration

P-E

2m w?
J” —
Eq

y=nine laneEI_ln|q+2P-E/E|

wq q

+

(20)

Since A >>1, the first logarithm in the parentheses dom-
inates the second one, except in a very narrow region in
the vicinity of ¢ ~2P-E/E. However, the contribution of
this region is small because of the compensating factor
(++P-E/Eq) vanishing at that point. Therefore the
second logarithm Eq. (20) can be neglected and integrals
in Eq. (19) can be immediately calculated:

2eEl )
K

Jno= —egn;n exp(zna)t)E—4e3ZZSmaxl
Again, Eq. (21) is valid for n < 4, and harmonics with
n > A are small.
Let us introduce currents j, and conductivities o,
with n =2k — 1, k = 1 via the following definitions:
.]:l :j;z,0+j;1,oc ’
(22)
=i, ti ,=o,(@Ecoshot .
Then from Eqgs. (17), (21), and (22) one immediately gets
8le’n,m;Z%  |2¢E|
= n

In |2eE]|
" E3 WK

WK

+S,, (23)

Let us emphasize at this point again that the conductivi-
ties o,(w) do not depend upon n until n <2|2eE|/(wk)
and rapidly decrease for n > |2¢E|/(w«x). The relevance
of this observation to the general high-order harmonic
generation problem is briefly discussed in Sec. VL.

V. MODERATE LASER INTENSITIES

In order to consider the nonasymptotic region of
moderate laser intensities, we have first of all to simplify
Eq. (13). After the calculation of the integral with
respect to directions of P in Eq. (13) we get

4mne .. dp d’q 9€e eE-q
i, =egexpliont) —en P V,|%S(q)
In e€Xpliow a)nZ ¢0 f(277')3 q |€Eq| q q
. — . +2P
X {cos | n arcsin QQZ)EZE—_(ZHP) —Cos | n arcsin i%)?g?q‘) H, (24)

where the actual ranges of integration over P and q coin-
cide with the regions of the definition of the arcsin func-
tions. These regions are different for the two correspond-
ing terms in the integrand. Formula (24) is valid for all
values of laser field intensity. In the preceding section,
intense laser fields vy >>v, were considered. As we men-
tioned in the Introduction, radiation with IA%~ 10!
W/cm? um? can be considered as moderate, if one deals
with the partially degenerated electron system in a solid
metal. Thus in the present section we shall concentrate
mainly on the case of strongly correlated plasma in fields

f
of moderate intensity, when v, ~vp~vg <k/m. Under
such conditions, bearing in mind the above remark on the
integration ranges, we can use the rough parabolic ap-
proximation (18) in the entire domain of integration in
Eq. (24). It means we can set

%, B=47re“zz—5:’;i : (25)
q K

For the case of strong degeneracy, we have ®y(P)=1,
P <pp=muvg, otherwise ¢y(P)=0. With these approxi-
mations the integral in Eq. (24) can be analytically calcu-

[V, 128(q)=
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lated for each n. We present the results for the first and
the third harmonics of the electric current:
2

2
. Ee WPpr
= —= — | === t,
Jh1=oyw) opy leE| 20 E cosw
2 (26)
j3250’0(a)) w—pe; E cosdwt ,

where we introduced oy(w)=12B7’n;p}e?/o?, the con-
ductivity, in the high-frequency, weak-field limit. For-
mulas (26) are valid for E < |wpg /e|.

V1. DISCUSSION OF THE RESULTS

First of all let us consider the conditions of the applica-
bility of Eq. (1), in which the electron—laser-field interac-
tion is described classically, but for the electron-ion
scattering the quantum description is used. If we consid-
er the time-averaged kinetic energy of an electron in a
laser field before and after a single elastic electron-ion
collision, then the time-averaged electron energy typical-
ly changes by mvg(v, +vg) [5]. This approximate formu-
la joins together both weak- and strong-field limits. The
classical description of the electron-laser-field interac-
tion used in Eq. (1) is valid, if multiple photon processes
dominate: mvg(v, +vg)>>fiw. This imposes limitations
on the frequency and the intensity of the laser field. At
the same time, the quantum description of the electron-
ion interaction used in Eq. (1) is applicable if
#i(v, +vg) > e2. For a solid density plasma, this condition
is valid even for weak fields.

Regarding the validity of the approximate one-peaked
form of the structure factor (18), one can say that the first
maximum of S(q) is much higher than the subsequent
ones unless the system is too close to the crystallization
point, which corresponds to I'=170 for the one-
component plasma model [17]). In this case one, of
course, should integrate Eq. (24) numerically. However,
at moderate laser intensities, large momentum transfers
g >« do not contribute (see Sec. V) and thus the one-
peaked form for the structure factor is still applicable.

Let us discuss the results obtained above, in particular
in comparison with the results published in the classic pa-
per by Silin [1]. Whereas Silin treated the case of a
Boltzmann plasma, the present paper deals with the case
of strongly coupled plasma at an arbitrary degree of de-
generacy. The main result is given by Eq. (24) and also
by Egs. (23) and (26). Formula (24) is considerably
simpler than the respective result obtained by Silin [see
Eq. (4.2) in [1] ], and is therefore more suitable for nu-
merical calculations as well as for asymptotic analysis.

Silin’s formula contains artificially introduced cutoff
parameters ¢p..,qmi, (maximal and minimal electron
momentum transfer) in order to avoid logarithmic diver-
gencies usually emerging in the Coulomb scattering prob-
lem. Such cutoffs appear in the present paper in a natural
way as the result of the mathematically consistent treat-
ment of the divergencies: q,,=|2¢E|/w corresponds to
twice the quiver momentum of an electron, and q,,;, =k
corresponds to the location of the first maximum of the
structure factor (inverse correlation length). Although

the general structure of the expression for o ,(w) in our
paper [see Eq. (23)] and in Silin’s paper is the same, the
present, more mathematically consistent analysis gives
the numerical factor in Eq. (23) two times smaller than in
(1].

Now let us briefly mention the connection of the non-
linear currents calculated above to bremsstrahlung ab-
sorption and harmonic generation. The rate of the ener-
gy absorption by a unit volume of a plasma can be calcu-
lated as {(j-E)), where { )) denotes the time averaging.
It is clear from Egs. (22) and (26) that only the first har-
monic of the current j contributes to absorption, since for
n>1 (coswt cosnwt ) =0.

The excitation of high-order harmonics of the electric
current by intense laser radiation means that light of the
respective frequencies can be emitted by the plasma. As
we have just mentioned above, the electric current har-
monics of order n > 1 do not contribute to energy absorp-
tion and thus physically correspond to multiphoton
scattering processes or harmonic generation phenomena.
Let us recall (see Sec. IV) that in the high intensity limit
the maximal order of harmonics generated is determined
by the ratio q,, /g mi, and the amplitude of the harmon-
ics does not depend upon n within this range. Such a
“plateau” terminating at a certain highest harmonic is an
attribute of harmonic generation phenomena, observed in
experiments and computer simulations of atom-laser ra-
diation interaction (e.g., [18]). This “plateau” behavior is
not yet well understood. In the case of a strongly cou-
pled plasma, considered in the present paper, a possible
qualitative interpretation of the existence of the above
“cutoff”” can be given. Due to strong ion-ion correlation
the minimum change of the electron momentum in a sin-
gle scattering event is of the order of Kk ~#/a, where a is
the ion sphere radius. It means that the electron is
effectively affected by the field of an ion at distances less
than #/k (for clearness we introduced Planck’s constant
#i here). Therefore the maximal work performed by the
electric field is W ~1i|eE| /k, and the electron can reemit
photon of the maximal frequency o'~W/#
=~ (qmax /qmin Jo.

Let us return to the discussion of formulas (26) for con-
ductivities at moderate laser intensities. It is the advan-
tage of the strong coupling limit that all harmonics of the
current can be calculated analytically using the approxi-
mation of Eq. (25). It should be emphasized that formu-
las (26) are not obtained by perturbation theory in terms
of the parameter eE /wpy; they are valid up to the values
of unity. In the limit £ —0, the first of Egs. (26) coin-
cides with Ohm’s law in the conventional linear form. In
this connection we suggest a semiempirical generalization
of Egs. (26): using experimentally measured values for
the high-frequency zero-field conductivity oy(w) we
enhance the reliability of formulas (26). In the present
paper, we restrict ourselves to the first and the second
harmonic of the electric current, however any higher har-
monic can be calculated analytically. Formulas (26) are
convenient for investigating how reflection and absorp-
tion of laser radiation depend on laser intensity. They
may also be useful in studying harmonics generation. Re-
sults of such studies will be published elsewhere.
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